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Abstraet- This paper develops a model that incorporates damage band evolution at three levels:
(i) at the mechanism level, the damage mechanisms, such as diffusive void growth and fatigue
cracks, determine the damage growth rate; (ii) at an intermediate level. the damage band is modeled
as springs connecting undamaged materials. and the spring constants change as damage develops:
(iii) at the continuum level. the damage band is modeled as an array of dislocations to satisfy
equilibrium. We demonstrate this model with an example of a band of microcracks subject to remote
tensile cyclic stress. It is observed that damage rapidly grows at the weakest regions in the band.
and a macroscopic crack nucleates while the overall damage level is still very low. The model shows
that there exists a critical number of cycles for macroscopic crack nucleation. Nanel'''t;o,,' which
depends on materials as well as the amplitude of applied cyclic stress. This critical number of cycles
is insensitive to the size of damage cluster, bUl decreases rapidly as the local excess of damage
increases. 1997 Elsevier Science Ltd.

l. INTRODUCTION

Engineering materials exhibit time-dependent degradation and failure under creep, stress­
corrosive cracking, or cyclic loading conditions. Although failure mechanisms vary in
different materials, they all display one common characteristic: damage originates from
localized regions and evolves to a macroscopic crack. The present paper investigates the
evolution of localized damage bands over time/cycles, and the relation between micro­
damage and macroscopic nucleation of defects. Following an earlier attempt (Ye, 1992),
the model includes three levels-the mechanism level, the intermediate level, and the
continuum level. (i) At a sufficiently fine resolution, damage processes such as power law
creep voids, diffusive voids, shear fatigue cracks are incorporated to determine the damage
growth rate. (ii) At an intermediate level, localized damage bands are modeled as springs
connecting undamaged materials. The spring compliances are nonuniform, increasing as
the damage evolves. (iii) At the continuum level, the localized damage band, growing in an
otherwise undamaged material, is modeled as an array of dislocations. The equilibrium
provides the governing equation for the local stress. The model estimates the critical time
or cycle number at which a macroscopic defect nucleates. For simplicity, the model is
limited to two dimensional analysis.
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Fig. 1. A localized damage band. where b is the average spacing between microscale damage, and
D is the average size of microscale damage.

2. GENERAL DESCRIPTION OF THE MODEL

Figure I shows an example of damage band. It is a weak region in an otherwise elastic
material, and is the potential band for deformation localization. The thickness of the band
is much smaller than the characteristic length of the sample. The material is assumed to be
subject to remote uniform tensile stress (j. Other types of loading can be analyzed similarly,
such as shear fatigue (Ye, 1992) and thermal cycling (Huang et al., 1997). Three levels
discussed in the previous section are prescribed in the following.

2.1. Mechanism level
Let w be the nondimensional damage parameter, such as the normalized microcrack

size or void size. The limit w = 0 corresponds to the undamaged state in the material. Its
growth rate, in general, is governed by the current damage state and the local stress (J, i.e.,

(1)

where t is the time o~ cycle number, to is a reference time or cycle number, (Jo is a reference
stress, and function F depends on the specific damage mechanism in the material. For many
damage mechanisms, the damage evolution rate can be related to the local stress (J through
a power law

OW I ((J)n
-~ = -F(w) ~
ot to (Jo

(2)

where the power n is a material property, and the nondimensional function F(w) represents
the damage growth rate when the local stress reaches the reference stress. In general, F(w)
is a monotonically increasing function of w since the damage growth rate increases with
the damage level.

2.2. Intermediate level
Beyond the elastic stretch in the undamaged material, there is an additional stretch

across the band, £5, due to localized damage. The additional stretch 6 is related to the local
stress (J through a bridging law,
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(3)

where 00 is a material length, and the function C can be obtained from a micromechanics
model for the specific damage mechanism in the material. In cases such as in stress corrosion
cracking (Cao et al., 1987) or shear fatigue (Ye, 1992), the stretch is linear in the stress so
that eqn (3) can be written as

o (J
-= C(w)­
00 (J 0

(4)

where C(w) is the linear spring compliance, which is also a monotonically increasing
function of w since the spring is more compliant as the damage level increases.

2.3. Continuum level
The localization band can be regarded as an array of dislocations. The local stress in

the band, (J, is caused by the remote uniform stress, (j, and by the dislocations (Rice, 1968) :

. - E' fYo aom d~
(J(x) = (J-- -"- --v

4n or; x-r;
(5)

where E' is Young's modulus E for plane stress or E/(1- v2
) for plane strain, v is Poisson's

ratio, and x is the coordinate in the direction of the band.
The distribution of the damage state w, the additional stretch 0, and the local stress (J

are governed by the differential and integral equations in eqns (2), (4) and (5). For a given
initial damage distribution, these governing equations can be solved numerically to evolve
the damage distribution as time or cycle increases.

3. MICROCRACK DAMAGE IN FATIGUE AND THE NUCLEATION OF A
MACROSCOPIC CRACK

The model outlined in the previous section is demonstrated here through an example
of microcracks in a localized band subjected to remote tensile cyclic stress, ~(j. As shown
in Fig. I, the average spacing between microcracks is b, and the average size of microcracks
is D. The damage parameter w is defined by

(6)

The limit w = 0 corresponds to an undamaged material, while w = I represents the critical
state when microcracks coalesce and a macroscopic crack nucleates.

3.1. Mechanism level: damage evolution rate
The damage mechanism in this example is the fatigue growth of microcracks. There

have been extensive studies on small fatigue cracks (e.g., Suresh and Ritchie, 1984, also
Suresh, 1991, for detailed discussion and documentation). The fatigue growth rate of
microcracks is influenced by many factors, such as microstructures (e.g., Pearson, 1975,
Lankford, 1982, Tanaka et al., 1983), T-stress level, plastic zone size, crack closure effect
around tips of microcracks (e.g., Allen and Sinclair, 1982, Suresh and Ritchie, 1984, Fleck
and Newmann, 1988), and environmental effect (e.g., Gangloff, 1981). Dowling (1977)
suggested that the cyclic I-integral ~I provides a measure of the driving force for fatigue
growth of small cracks, and the growth rate is approximately proportional to ~f" (m is a
material property). Though the following analysis can be applied to any laws governing
fatigue growth of microcracks, Paris Jaw is used here for simplicity,
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dD
- = f3(I1K)n
dN

(7)

where N is the number of cycles, f3 and n are material properties, and 11K is the cyclic stress
intensity factor at a microcrack tip. For the configuration in Fig. I, 11K is related to the
cyclic local stress 110' by (see Appendix A for details)

(8)

where b is the average spacing between microcracks in the band. The damage growth rate
can then be found as

(9)

where

(10)

3.2. Intermediate level: bridging law
Due to the presence of microcracks, there is an additional cyclic stretch across the

band, 116, beyond the uniform stretch associated with undamaged materials. This additional
cyclic stretch comes from the cyclic opening of microcracks in the band. A micromechanics
model is described in Appendix A, and 116 is related to the cyclic local stress 110' by the
bridging law

It can be rewritten as

where

4 b I
116 = -----;-In ( ).110"n E n

cos 2w

116 110'
-= C(w)-
bO'o 0'0

g

4
C(w) = ;In (n)'

cos 2w

(II)

(12)

(13)

For an undamaged material (w = 0), C(w) is zero such that there is no additional cyclic
stretch. In the other limit when microcracks start to coalesce (w = I), C(w) approaches to
infinity so that the local stress is zero and the spring is completely broken. Therefore, there
is no bridging at this moment (w = I) and a macroscopic crack is nucleated.
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3.3. Continuum level: stress equilibrium
For a uniform remote cyclic stress i!0', the stress equilibrium eqn (5) takes the form

- E' fX. ci!6(c)
i!(J(X) = i!(J - 4n ac .

-:7,)

d(

x-I:"
(14)

For a given damage distribution w(x), eqns (12) and (14) give a linear integral equation
for i!(J (or i!6).

3.4. Normalization
An important equivalence between the amplitude of applied cyclic stress i!0' and

number of cycles N can be established by the following normalization:

The governing eqns (9), (12) and (14) then become

aw
aN' = F(w)((J')"

6' = C(W)(J'

(J' = I - -4
1

fX. ~~: .. ,d('"' .
n _ Yo O( X - (

(15)

( l6a)

(16b))

(16c)

It is evident that the number of cycles N appears together with the amplitude of remote
cyclic stress (i!0')" through the normalized cycle number N'. Therefore, a small amplitude
of applied cyclic stress i!0' is equivalent to a large number of cycles, and vice versa. This is
similar to the S-N curve in the empirical fatigue design. (This conclusion results from the
Paris law, and may not hold for non-power law damage growth rate.)

At a given cycle N', the damage distribution w(x') is known. The combination of eqns
(16b) and (l6c) solve the stress distribution (J' (x'), and then eqn (16a) updates the damage
distribution w(x') for an increment of cycle i!N'. The procedure then repeats for the next
cycle number, N' +i!N'.

3.5. Initial distribution of damage in the hand
The damage parameter W is considered as a continuum variable in the continuum

analysis. This is rather similar to the Gurson's (1975) model for a voided, dilating material,
which was derived from a cell analysis, but has been successfully applied in the continuum
theory. Following Ohno and Hutchinson (1984) and Huang and Hutchinson (1989), the
following initial damage distribution is taken to represent a cluster of damage in the band

W(x) = Waverage + (wmax - Waverage) exp L- ~(;:)
2

J (17)

where Waverage and W max are the average and maximum damage level in the band. and 2/.b
represents the size of the damage cluster. The nondimensional parameter W max - Wavcragc and
2A characterize the excess of damage in the band and ratio of the size of damage cluster to
average microcrack spacing, respectively.
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3.6. Results and discussions
Details of the numerical method to solve governing eqn (16) are given in Appendix B.

A value ofpower n = 2 is fixed in the present study. Results in Figs 2--4 are for initial damage
parameterswaverage = O.OI,wmax = O.IO,and2A = 1. This represents a highly localized cluster
of damage that has the size of approximately b, and the excess of damage in the band is
much larger than the average damage level. The initial damage profile is shown in Fig. 2,
vs the normalized distance in the band, x/b. As the cycle number increases, the damage
distribution evolves very nonuniformly in the band. Damage at the center (x = 0) increases
significantly faster than the average level (Fig. 2). For example, W increases from 0.1 to I
at the center while the average W is changed by approximately 0.1. Therefore, damage
evolution is rather concentrated at the weakest regions in the material. This is similar to
the deformation localization in voided ductile materials (Ohno and Hutchinson, 1984,
Huang and Hutchinson, 1989).

The distributions of additional stretch b and local stress (J are shown in Figs 3 and 4,
respectively. It is observed that the evolutions of band (J are also very concentrated. As the
damage parameter W at the center approaches one, the corresponding additional stretch is
much larger than the average level, and the local stress approaches zero such that bridging
effect starts to disappear at the center. The number of cycles at this moment is critical
because microcracks start to coalesce and a macroscopic crack is to be nucleated. This
critical number of cycles for crack nucleation, denoted by NnucleatlOm characterizes the
maximum number of cycles the material can sustain before a macroscopic crack appears.
It depends on the material, the amplitude of applied cyclic stress AO', as well as the initial
distribution of damage in the band. For initial damage parameters given above. this critical
number is Nnucleation = 1.503/3-1b1 (n!2)(AO') -n (Fig. 2).
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Fig. 2. Damage distribution, w, in the band for several normalized number ofcycles. pb'" 2, I (t1(j)"N.
where the average initial damage level w,vemg, = 0.01, excess of damage in the band W m,,­

Wav",g, = 0.09, normalized size of the damage cluster 2;' = 1. power n = 2. and b is the average
spacing between microcracks. The number of cycles when W reaches one is the critical number

cycle for crack nucleation, Nnud,,,t;on-
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Fig. 3. The distribution of normalized additional streich across the band for several number of
cycles, fJb'n'2)-' (Sa)"N, where the average initial damage level Wa""go = 0.01, excess of damage in
the band W m" - W aveeag, = 0.09, normalized size of the damage cluster 2i. = I, power n = 2, and h is

the average spacing between microcracks.

xIb

Fig. 4. The distribution of normalized stress in the band for several number of cycles, fJb,n'21- I (Sa)" N,
where the average initial damage level Wa",ag, = 0.01, excess of damage in the band "'m,,,­

Wa"ng, = 0.09, normalized size of the damage cluster 2), = I, power n = 2, and b is the average
spacing between microcracks.
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Fig. 6. The normalized critical number of cycles for crack nucleation. /3b'''''- I (LiO')" N" "d., " ,,,,,. vs the
excess of damage in the band, (Om", - (0""",",. for a small damage cluster (2? = I) as well as a large

one (2? = 10), where the average initial damage level (0"",,,,, = 0.01, and power n = 2.

The normalized critical number of cycles for crack nucleation, j3h,
,,2 J

- I (,1(J)"/v'nucleallon. is
shown in Fig. 5 vs the normalized cluster size 2A for W max = 0.10, Waverage = 0.01 and power
n = 2. As the cluster size increases, the critical number of cycles rapidly approaches to an
asymptote, approximately 1.2j3-1 hi 11/2(,1"iT)-". Therefore, only small damage clusters
whose sizes are less than twice the microcrack spacing can achieve a significant increase in
the critical numbers of cycles (Fig. 5), hence to improve the fatigue life of the material.

The normalized critical number of cycles for crack nucleation, f3Hnc J
' I (,1(f)"Nnucieation,

is shown in Fig, 6" vs the excess damage in the band, wmax-Wavmge' for a small cluster
(2J. = I) as well as a large one (2), = 10), It is clearly observed that the critical number of
cycles for crack nucleation is rather insensitive to the size of the damage cluster since two
curves in Fig, 6 are very close. However, the critical number of cycles is reduced significantly
as the excess of damage in the band increases. One can conclude that the nucleation of a
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macroscopic crack IS very sensitive to the local excess of damage, but not the size of a
damage cluster.

4. CONCLUDING REMARKS

A model is presented to investigate damage evolution in a localized weak zone in
materials. It includes modeling at three different levels: (i) on the mechanism level, damage
mechanisms, such as diffusive void growth, fatigue cracks, are incorporated to determine
the damage growth rate; (ii) on an intermediate level, localized damage bands are modeled
as springs connecting undamaged materials, and spring constants are obtained from mic­
romechanics models; (iii) on the continuum level, a localized damage band is modeled as
an array of dislocations governed by the stress equilibrium.

The model is demonstrated through an example of microcracks in a localized band
subjected to remote tensile cyclic stress. It is observed that damage evolution is rather
concentrated at the weakest regions in the material, where damage rapidly accumulates and
a macroscopic crack nucleates while the overall damage level is still very low. The model
shows that there exists a critical number of cycles for crack nucleation, NnudcCllu,n' which
depends on the material, the amplitude of applied cyclic stress, as well as the initial
distribution of damage in the band. This critical number of cycles for crack nucleation is
found to be relatively insensitive to the size of a damage cluster, but decreases rapidly as
the local excess of damage increases.

The assumptions made in the above demonstrational example significantly simplify
the analysis without changing the time-dependent degradation characteristics in materials.
They can be improved by incorporating realistic material features in the model. For
example, the cluster of defects in eqn (17) can be replaced by realistic nonuniform defect
distributions in materials (Boucier e! aI., 1986, Spitzig e! aI., 1988, Huang, 1993). The
material and component geometries under complex loading conditions can be studied by
the finite element method on the continuum level instead of the integral equation approach
in eqn (5). The evolution of some damage (such as fatigue growth of microcracks, see
Suresh, 1991) follows eqn (I) rather than the power law in eqn (2). The nonlinear bridging
law in eqn (3) may be more appropriate than the linear one in eqn (4) for certain materials
and loadings. By incorporating all these features in the analysis, the present model has the
potential to connect the damage evolution process on the mechanism level to the material
and component design on the continuum level.
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APPENDIX A

The additional stretch across the band, b, comes from the opening of microcracks. By averaging the crack
opening displacement in the band (Fig. I), one has

(AI)

where bopen is the crack opening displacement, and can be estimated using a configuration of periodically distributed
cracks as (Tada et al., 1985)

nx
4O'b I cosh

bop," = -nE-,cosh- --n-D-

cos V;

D
for Ixl ~ 2' (A2)

The substitution of eqn (A2) into eqn (AI) leads to eqn (II).
For periodically distributed microcracks in Fig. I, the stress intensity factor is (Tada et al.. 1985)

~
K = a Ibtan~.y 2b

which becomes the same as eqn (8) by changing K and a to t!K and t!O', respectively.

APPENDIX B

From symmetry 0'( -x) = O'(x) and b( -x) = b(x), eqns (l6b) and (16c) can be rearranged to

(A3)

b(x) I IX ~ ab
--= 1-- --~d~

C(w) 2n (l x'-( a~ "
for x> o. (BI)

By the following change of variables, the interval (0, + (f) for x and ~ is transformed to ( - I, I) for u and t

For each given damage profile w(x), the additional stretch b is expanded in terms of Chebyshcv polynomial

M

b(u) = L a/Ti I (u)
1= I

(B2)

(B3)

where Ti is the Chebyshev polynomial of degree j, and a/ is the coefficient to be determined. By the standard
collocation method, eqn (BI) becomes M linear algebraic equations and can be solved numerically.

Equation (l6a) is an ordinary differential equation for the damage parameter OJ. It can be solved by the
Runge-Kutta method if the local stress distribution O'(x) is known. Therefore, the numerical procedures to obtain
the damage state OJ, local stress a, and additional stretch bare
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1. For the initial damage distribution w(x) in eqn (17), solve the integral eqn (BI) by the expansion [eqn
(B3)] and collocation method in order to obtain the distribution of the additional stretch b(x) and local
stress <rex) in the band;

Ill. For the known local stress distribution <rex), solve eqn (16a) by the Runge-Kutta method and get the
new damage distribution w(x) at the next cycle;

III. For the new damage distribution w(x), solve eqn (BI) in order to get the corresponding additional
stretch b(x) and local stress <rex) for this cycle;

IV. Repeat steps II and III until the maximum value of w in the band reaches I. The corresponding number
of cycles is the critical cycle number for crack nucleation.


